Normal tendon structure

Patrick Grabowski MPT, PhD, OCS
Assistant Professor of Physical Therapy
University of Wisconsin La Crosse

Normal anatomy—Tendon structure

Normal anatomy—Tendon microstructure

Thorpe, C., Screen, H. Advances in Experimental Medicine and Biology 920. DOI 10.1007/978-3-319-32843-6_1
Normal anatomy - Tendon microstructure

- Collagen, proteoglycans, and cell nuclei

Thorpe, C., Screen, H. Advances in Experimental Medicine and Biology 920, DOI 10.1007/978-3-319-33943-6_1

Normal anatomy - Tendon microstructure

- Energy storing tendons (Achilles/Patellar) have special characteristics
 - Less total collagen, but more type III
 - More elastin
 - Greater collagen crimp angle
 - Greater water content
 - More elasticity, extensibility, fatigue resistance

Thorpe, C., Screen, H. Advances in Experimental Medicine and Biology 920, DOI 10.1007/978-3-319-33943-6_1

Normal anatomy - Tendon microstructure

- Wrap-around tendons (proximal hamstring) also have special characteristics
 - Tension + compression & shear
 - Fibrocartilage surface at interface with pulley

Information herein is the property of Patrick Grabowski, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Normal anatomy—Vascularity

- Tendons vascularized from surrounding arteries arising from muscle and bone junctions, surrounding connective tissue
- Highly vascular in development, poorly vascularized when mature
- “Watershed” areas less distinct than once thought

Normal anatomy—Innervation

- Sensory innervation – free nerve endings primarily in sheaths and between fascicles
 - Some have other sensory receptors (Ruffini, Pacinian)
- Autonomic innervation along blood vessels

Normal anatomy—Innervation and Vascularity – Fat pads

- Highly vascularized and innervated
- Large fat pads associated with patellar and Achilles tendons
- Likely function to supply blood and proprioception

Information herein is the property of Patrick Grabowski, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Normal Tendon Mechanics

Bryan Heiderscheit, PT, PhD
Professor
Department of Orthopedics and Rehabilitation
Department of Biomedical Engineering
Director, UW Runners' Clinic
Director, Badger Athletic Performance Research
Co-director, UW Neuromuscular Biomechanics Lab

Insertion Zones

Stress-Strain Relation

- Viscoelastic
 - Creep, stress relaxation, hysteresis

Fig 4-8, 4-10. Nordin & Frankel (2001) LWW
Greater Tendon Stress in Youth

- Age effect
 - Similar strength, reduced tendon CSA
 - Greater tendon stress (more pronounced in females)

Tendon Changes in Adolescence

- Patellar tendon stress is greater in mid-adolescence (~16 yo) compared to late (~18 yo)
- Imbalance within quad muscle-tendon unit in mid-adolescence
 - Gains in tendon CSA are delayed relative to muscle strength

Imbalanced Adapations in Adolescent Athletes

- Greater patellar tendon strain in athletes compared to controls
 - >16hrs/wk training vs <4hrs/wk recreational training
- Greater fluctuation in tendon strain over time in athletes
 - due to fluctuations of muscle strength rather than tendon stiffness
- Different temporal dynamics of muscle and tendon adaptation

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
2002 Hood to Coast Relay
Injuries over Previous Year

- 46% (1309/2825) of runners report being injured in past year
 - ≥ 40y/o = 49%
 - < 40y/o = 45%
- ~50% were self-diagnosed

Increased Compliance of Gastroc Aponeurosis with Age

- Middle age and older runners may be more predisposed based on a reduced tendon vasculature and altered tendon compliance

Depth-Dependent Achilles Tendon Deformation

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Achilles Tendon Displacement during Walking

- Achilles at greater length at toe-off in older adults
- Deep-superficial regions elongated uniformly as walking speed increased
 - In young, superficial region elongated 2x that of deep

![Graph showing Achilles tendon displacement during walking](image)

Reduced Ankle Moment

- Reduced differential displacement of Achilles is correlated with reduced ankle plantar flexion moment in walking
- 16% reduction in positive work of gastrocnemius

![Graph showing reduced ankle moment](image)
Models of tendinopathy etiology

Patrick Grabowski MPT, PhD, OCS
Assistant Professor of Physical Therapy
University of Wisconsin La Crosse

Prevalence

• Common overuse injury in active populations
 • 30% of all primary care musculoskeletal consults
 • Achilles: 29% of runners, 4% non-runners
 • Patellar: 32-45% of jumping athletes (volleyball, basketball)

Risk factors

• Patellar
 • Sex (male)
 • Height (tall)
 • Body mass (high)
 • Ankle dorsiflexion (reduced)
 • Training frequency (increased)
 • High frequency Weight and jump training
 • Hard surfaces

• Achilles
 • Various LE impairments
 • Obesity, diabetes and other health conditions
 • Genetic factors
 • Training errors
 • Footwear

Models of etiology

- **Inflammatory**
 - Pre-1990, tendinitis
 - 1990-2010, degenerative models, tendinosis
 - ~2010-present, inflammatory process probably plays a role

Models of etiology

- **Vascular**
 - Areas of reduced blood flow may result in tissue degeneration
 - Areas of neovascularization may contribute to pain and chronicity of tendon disorder

Models of etiology

• Neural
 • Peripheral mechanisms, associated with vascular changes, "neural ingrowth"
 • Central processing – central sensitization, cortical changes, errors in the internal calculation of tendon load

• Genetic
 • Many risk factors genetically determined
 • Sex, flexibility
 • Familial associations in orthopedic injury
 • Bilateral injury risk
 • Association of blood type to Achilles rupture risk
 • Higher rate with type O, lower rate with type A

Ribbans, W. & Collins, M.
Models of etiology

• Epigenetic

Ribbens, W. & Collins, M.

Effect of change in DNA sequence (genotype) on phenotype

No effect

Effect of environmental exposure [acting] on the phenotype

Most severe

Least severe

Increased injury rate

Wild type

Performance advantage

Phenotype (trait)

Classical monogenic disorder

Environmental exposure NOT required

Environmental exposure interacting with genetic background

Information herein is the property of Patrick Grabowski, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Biomechanical Model of Tendinopathy Etiology

Bryan Heiderscheit, PT, PhD
Professor
Department of Orthopedics and Rehabilitation
Department of Biomedical Engineering
Director, UW Runners' Clinic
Director, Badger Athletic Performance Research
Co-director, UW Neuromuscular Biomechanics Lab

Tendon Pathology
- not an inflammatory condition
- results from a failed healing process that causes degenerative changes of the tendon structure, neovascularization, and nerve ingrowth

Simplified Model
- Normal Tendon
- Cells activated and increased
- Proteoglycans (PG) increased
- ECM disruption from PGs
- Vascular ingrowth
- Cell death
- ECM degeneration
- Neovascularization

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Common Clinical Presentations

- **Acute episode of increased training or activity levels**
 - Likely a degenerative lesion with some reactive aspects
 - Mismatch between load applied and tendon capacity

- **Reactive episode after period of time off**
 - Injury or off-season followed by (rapid) return to previous level of training
 - Unloading period decrease tendon mechanical properties and tendon capacity to tolerate load

Characteristics

- **Reactive**
 - Younger (15-25)
 - Rapid onset usually related to load
 - Excessive load increase
 - Fusiform swelling of tendon
 - Easily aggravated with exercise, slow to settle
 - PAINFUL
 - UNCOMMON

- **Reactive + Degenerative**
 - Older (40-60+)
 - Past history with load related exacerbations
 - Variable swelling
 - Less irritable
 - PAINFUL
 - VERY COMMON

- **Degenerative**
 - Older (40-60+)
 - Long history of minimal symptoms
 - Variable swelling and nodules
 - Often show unloading strategies or atrophy
 - NOT PAINFUL
 - COMMON
 - NOT SEEN CLINICALLY
Resistance Exercise

- (eccentric) exercise is a positive stimulus for tendon cell activity and matrix restructuring
 - increase collagen production in abnormal tendons
 - improve tendon structure in both the short term and the longer term
 - decrease tendon vessels
 - reduce pain

- Mechanical loading causes biochemical response through a process called mechanotransduction

Mechanotransduction

Mechanocoupling

Tendon cell undergoing (A,B) shear and (C) compression during a tendon-loading cycle.

Mechanotransduction

Cell-to-cell Communication

Assessment of patients with chronic LE tendinopathy

Patrick Grabowski MPT, PhD, OCS
Assistant Professor of Physical Therapy
University of Wisconsin La Crosse

Patient management –

• Medical screening/systems review
• Examination and evaluation/classification
 • Subjective
 • Objective
• Determination of tissue irritability
• Intervention

Assessment:
Review ICF model

Health condition
Achilles Tendinopathy

Body Part Function/Structure
- Pain in lower limb
- Power isolated muscle
- Stiffness
- Ankle/Foot: Achilles

Activities
- Walking short/long distance
- Running
- Jumping

Participation
- Sports
- Work/employment
- Completing daily routine

Environmental Factors
- Home/work
- Environment
- Transportation

Personal Factors
- Experience/past injuries, age, primary exercise
Evaluating outcome measures

- Validity
- Reliability
- Responsiveness
 - MDC
 - MDIC
- Feasibility

Assessment: Participation/Activity

- Patient Reported Outcomes:
 - VISA

Assessment: Participation/Activity

- VISA-A

Assessment: Participation/Activity

• LEFS

Assessment: Participation/Activity

• FAAM

Assessment: Participation/Activity

• Health Measures- Promis
 • http://www.healthmeasures.net/explorer-measurement-systems/promis/intro-to-promis/list-of-adult-measures
Assessment: Participation/Activity

- Other Patient Reported Outcome measure possibilities:
 - Quality of life measures
 - SF-36
 - EQ-5D
 - Pain measures
 - McGill pain questionnaire short form
 - Fear avoidance belief questionnaire
 - Mental health
 - Major depression inventory
 - Perceived stress scale

PRO measure resources

- www.rehabmeasures.org
- www.orthopaedicscores.com
- www.PTnow.com

Assessment: Body part function/structure: Achilles

- Heel rise test (single leg endurance test, 30 reps/min)
 - Mean ~ 25
 - ICC 0.78-0.84, MDC~ 7
- Hopping (contact/flight time)
 - ICC 0.83
- Drop countermovement jump (height)
 - ICC 0.88

Assessment: Body part function/structure: Achilles

Joint ROM
- Talocrural dorsiflexion
- 1st metatarsophalangeal extension
- Rearfoot /Talocalcaneal eversion
- Hip extension

Assessment: Body part function/structure: Achilles

Muscle Flexibility
- Gastrocnemius/soleus muscle complex
- Thigh and hip musculature
 - Quadriceps and hip flexors

Assessment: Body part function/structure: Achilles

Muscle Strength
- Tibialis posterior
- Fibularis longus
- Gastrocnemius/soleus
 - Quadriceps femoris
 - Trunk, buttock, and thigh

Assessment: Body part function/structure: Patellar

• VAS post squat (5 SL squats)
• Bilateral countermovement jump
• Single leg triple hop

• These have been described but not sufficiently evaluated

Assessment: Tests in development

• Outcome measures for hip tendinopathies
 • VISA-H
 • ICC = 0.90-0.95
 • Copenhagen Hip and Groin Outcome Score
 • ICC = 0.82-0.91
 • MDC = 17.7 to 33.8

Assessment: Tests in development

• Chronic Tendinopathy assessment protocol (DOD project at UW)
Determination of tissue irritability

- Low, Moderate, High, based on 3 variables
 - Amount of activity/pressure/force needed to provoke symptoms
 - Severity of symptoms when provoked
 - Requirements to ease symptoms (time and activity modification)

- This information helps guide treatment prescription

Low irritability

- Perform ADL’s without limitations
- Tissue warms up easily with reduced symptoms
- Symptoms ease quickly when provoked
- Do not need to cease due to symptoms
- Sleeps undisturbed

Moderate irritability

- Daily function partially limited
- Tissue may warm up but symptoms return and limit activity
- Longer time for symptoms to ease (1:1 symptom time to rest time)
- Uses medication
Severely irritable:

- Daily function significantly limited, more time at rest than active
- Basic activity elevates symptoms quickly
- Symptoms take much longer to ease versus provoke
Load Progression for Tendinopathy Recovery

Bryan Heiderscheit, PT, PhD
Professor
Department of Orthopedics and Rehabilitation
Department of Biomedical Engineering
Director, UW Runners' Clinic
Director of Research, Badger Athletic Performance
Co-director, UW Neuromuscular Biomechanics Lab

Tendinopathies

- Among the most common of running injuries
 - Achilles
- Prolonged, unpredictable recovery
- Risk increases with age
 - > 35 y/o
- Interaction of tissue mechanics and running mechanics

Heavy Load Eccentric Exercise

- Strong clinical evidence that eccentric strengthening can be effective in promoting healing of tendinopathies

- Basic Program
 - 3 x 15 reps with knee straight
 - 3 x 15 reps with knee bent
 - 1-2x daily exercise
 - 12-week program
 - + 10-20% BW as tolerated

Heavy Load Eccentrics

Insertional
Progress to step as pain allows
Full motion as pain allows

Midsubstance

Refining the Program

- What aspects of the Alfredson's protocol are the key to success?
 - Eccentrics
 - Full motion
 - 2x/d for 12 wks
 - Knee straight (gastroc) and knee bent (soleus)

- Mid-portion vs insertional

- Concerns with patient adherence (painful)
 - Subsequent risk of recurrence

Pain Monitoring

Pain Monitoring Model
Numerical Pain Rating Scale (NPRS)

- No pain
- Acceptable zone
- High risk zone
- Worst pain imaginable

1. The pain is allowed to reach 5 on the NPRS during the activity.
2. The pain after completion of the activity is allowed to reach 5 on the NPRS.
3. The pain the morning after the activity should not exceed a 5 on the NPRS.
4. Pain and stiffness is not allowed to increase from week to week.
Pain and Tendon Load Management

- **Tendon load reduction**
 - Reduce running volume and load (increase step rate, avoid hills) to avoid exacerbation of symptoms
 - May need to temporarily avoid over-ground running and substitute other exercise options (cycling, deep water running)
 - Address trigger points, joint mobility, and posture as needed

- **Pain management**
 - Isometric exercises of the involved tendon: 30–60s holds, 3–5 reps, 1–3 sets; start with lower volume if tendon is highly reactive/irritable

Tendon Load Management

- **Commonly restrict volume and intensity of training**
 - Avoid complete rest

- **Avoid positions that increase tendon compression**

- **Progress:**
 - Motion
 - Intensity
 - Volume

<table>
<thead>
<tr>
<th>Tendons/Compressibility</th>
<th>Modification</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achilles exercise</td>
<td>Heal raise</td>
<td>Effective</td>
</tr>
<tr>
<td>Tibialis posterior</td>
<td>Orthotic and heel raise</td>
<td>Limited</td>
</tr>
<tr>
<td>Hamstring (upper)</td>
<td>Limit sitting/landing</td>
<td>Limited</td>
</tr>
<tr>
<td>Gluteus medius and tensor</td>
<td>Compressive control; deep knee flexion</td>
<td>Limited</td>
</tr>
<tr>
<td>Adductor longus</td>
<td>Limit torso adduction/adduction/extension</td>
<td>Limited</td>
</tr>
<tr>
<td>Patellar tendons</td>
<td>Heal raise</td>
<td>Limited</td>
</tr>
<tr>
<td>Quadriceps</td>
<td>Limit flexion</td>
<td>Limited</td>
</tr>
</tbody>
</table>

Isometrics and Pain Modulation

<table>
<thead>
<tr>
<th>Table 2 Loading protocol in the study</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Isometric</td>
<td>Isotonic</td>
</tr>
</tbody>
</table>

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Less Pain but Same VISA-P

- in-season VB and BB players
- Isometric
 - leg extension @ 60°
 - 5 x 45s @ 80% MVC
- Isotonics
 - leg extensions 10-90° (or comfort)
 - 4 x B reps @ 80% RPM
- 2.5% intensity progression per wk

van Ark et al. (2016) J Sci Med Sport

Tendon Load Adaptation

Step 1
- Continue isometric exercises and ice for pain management; increase dorsiflexion angle as able
- Improve muscle strength (higher load, 3 sets of 8-15 reps, 3-4 d/wk) and endurance (lower load, 3 sets of 20–30 reps, 5–7 d/wk) based on individual impairments and needs
 - Constrain range of motion to minimize tendon wrapping
 - Emphasis on the eccentric phase initially but not exclusively

Step 2
- Improve muscle power; increase speed and range of exercises
- Progress to plyometric training, such as jump squats, skipping, jumping rope, double-leg progressing to single-leg hopping (30–60s reps, 4–6 sets with 60s rest between sets, 2–3 d/wk)

High-Magnitude Loading Elicits Tendon Adaptors

- Achilles tendon training program
 - High strain (90%MVC) vs low strain (55%)
 - Randomized between legs
 - 5 sets of isometric plantarflexion (knee straight)
 - Neutral exercise volume
 - 14wk duration; 4d/wk

- Both groups showed increased plantarflexor strength (20–32%)
- High magnitude loading (90% MVC) resulted in:
 - reduced tendon strain
 - increased tendon CSA
- Training at 55% MVC had no effect on the tendon

Heavy Slow Resistance

- Compared to typical heavy load eccentric
 - Similar clinical improvements (VAS, VISA-A)
 - Similar reductions in tendon thickness and neovascularization
 - Greater patient adherence and satisfaction
- Less total loading time

Week Load

<table>
<thead>
<tr>
<th>Week</th>
<th>Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3x15RM</td>
</tr>
<tr>
<td>2-3</td>
<td>3x12RM</td>
</tr>
<tr>
<td>4-5</td>
<td>4x10RM</td>
</tr>
<tr>
<td>6-8</td>
<td>4x8RM</td>
</tr>
<tr>
<td>9-12</td>
<td>4x6RM</td>
</tr>
</tbody>
</table>

- 6 s/rep, 3x/wk
- bilateral, equal weight bearing

Greater Dorsiflexion with Hopping

- Individuals with Achilles tendinopathy
 - Hopping range is shifted towards a more dorsiflexed position
 - Greater overall stretch
 - Delay in soleus muscle activity

Achilles Tendinopathy Provocative Running Mechanics

- Pain is typically during propulsive phase of stance (50-100%)
 - Generally not during loading response
- Excessive ankle dorsiflexion during midstance
 - Should be assessed relative to ankle dorsiflexion observed in weightbearing
 - Excessive strain and wrapping prior to initiation of concentric contraction
- If medial insertional pain, look for high rate of pronation during contact
How to Reduce Dorsiflexion Angle?

- Increased ankle dorsiflexion is related to increased knee flexion
- Reduce both by increasing lower extremity stiffness
 - Spend less time on the ground

Goal: Reduce Ankle Dorsiflexion

- Increase step rate → reduces ground contact time → reduces ankle dorsiflexion

Bent Knee Strengthening

- Soleus (deep Achilles) is often not adequately emphasized during the rehabilitation process
- Restrict dorsiflexion during exercise as needed
Eccentrics Alternating Stretch-Shortening Cycle

- Single bout of calf eccentrics
 - Seated; 5 x 10 (6RM)
- Assessed partial load hopping mechanics 7 days later
- Resulted in:
 - Earlier onset and peak activation of soleus
 - Reduced peak ankle dorsiflexion
 - Increased limb stiffness

Debenham et al. (2017) J. Sport Rehab

Mild Plyometrics

2-leg 1-leg

Basic Achilles Program

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate duration</td>
<td>1-2 wks</td>
<td>2-4 wks</td>
<td>4-12 wks</td>
</tr>
<tr>
<td>Repetitions</td>
<td>1-3 x 3-5</td>
<td>3 x 15</td>
<td>3 x 15</td>
</tr>
<tr>
<td>Range of motion</td>
<td>Fixed</td>
<td>Limited</td>
<td>Full</td>
</tr>
<tr>
<td>Exercises:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isometric (30-60s holds)</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>2-legged heel raises standing</td>
<td>●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-legged heel raises standing</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>2-legged heel raises sitting</td>
<td>●</td>
<td>+10-20% BW</td>
<td></td>
</tr>
<tr>
<td>2-up/1-down heel raises standing</td>
<td>●</td>
<td>+10-20% BW</td>
<td></td>
</tr>
<tr>
<td>Plyometrics</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>
Delayed Gluteal Muscle Activation with Achilles Tendinopathy

- Symptomatic Achilles tendinopathy (n=14) vs healthy controls (n=19)
 - Currently running ~38km/wk
 - AT group VISA-A, 70±10
- Tested at 4.0 m/s (6:40 min/mile)
- G.Med and G.Max onset later in AT group
- Reduced duration of G.Max
- Increased hip ER and ADD external moments in AT group
- Increased duration of stance phase (2-3%) for AT group
- Cause or effect?

Gluteal Activity

- Gluteus Maximus and Medius are active during stance and 2nd half of swing and 1st half of stance

Running Step Rate and Gluteal Muscle Loads

- Decreased load to glutes during stance phase with increased step rate
- Gluteus medius incurs greatest load of all gluteal muscles

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Proximal Hamstring Tendinopathy

- Related to wrapping of tendon around ischial tuberosity
 - Creates compression and shearing on tendon and possibly bursa
- Presentation
 - No specific mechanism of injury
 - Pain localized on or adjacent to ischial tuberosity
 - No radiating pain
 - Pain may reduce during running
 - Aggravated by speed work and uphill
 - Pain is provoked near end-range hip flexion and with resisted hip extension in a hip flexed position

Provocative Running Mechanics

- Positions of increased hip flexion
 - Increased wrapping of tendon against ischial tuberosity
 - Examples
 - Uphill running
 - Speed work
 - Foot well ahead of center of mass at contact
 - Excessive anterior pelvic tilt

Postpartum Pain Distribution

- Surveyed 244 runners that gave birth in prior 2 yrs
 - 35% reported MSK pain upon return to running

- Bar chart showing
 - 72% Lumbo-Pelvic-Hip
 - 28% Other
 - 20% Lumbo-Pelvic-Hip in General Population
 - 80% Other in General Population

References:

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Gluteus Max Activity in Swing

- Hamstring injuries in running have been associated with reduced G. Maximus activity in 2nd half of swing (front swing)

Hip Muscle Contribution

- Increased running speed creates substantial swing phase demands on G. max and hamstrings

Pain Management

- Isometric exercises of the involved tendon: 30–60s holds, 3–5 reps, 1–3 sets; start with lower volume if tendon is highly reactive/irritable

- Tendon load reduction
 - Reduce running volume and load (increase step rate, avoid hills) to avoid exacerbation of symptoms
 - May need to temporarily avoid over-ground running and substitute other exercise options (cycling, deep water running)
 - Address trigger points, joint mobility, and posture as needed

This information is the property of Bryan Heiderscheid, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Tendon Load Progression

Isometric
- Limited hip flexion

Isotonic
- Progressing hip flexion

Plyometric

Limited Hip Flexion

Treadmill Belt Resistance

0.5 mph with neutral pelvis

- 3x12-15; 1-2x/d
- Notable improvement in 2wks, initiated running in 4wks

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Bridged Knee Curls on Physioball

2-leg

1-leg

Modified Nordic Curls

Isometric
Limited hip flexion

Isotonic
Progressing hip flexion

Plyometric

Increased Hip Flexion

Tendon Load Progression

Resisted Terminal Swing

Exercise Progression

<table>
<thead>
<tr>
<th>Isometric</th>
<th>Isotonic</th>
<th>Plyometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited hip flexion</td>
<td>Progressing hip flexion</td>
<td></td>
</tr>
</tbody>
</table>

Tendon Load Progression

Example Plan

<table>
<thead>
<tr>
<th>Isometric</th>
<th>Isotonic</th>
<th>Plyometric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited hip flexion</td>
<td>Progressing hip flexion</td>
<td></td>
</tr>
</tbody>
</table>

This information is the property of Bryan Heiderscheit, PT, PhD and should not be copied or otherwise used without express written permission of the author.
Passive Tension of Muscle

- Increased passive muscle stiffness (shear wave imaging) of the vastus lateralis in BB and VB players with patellar tendinopathy
 - No difference in RF stiffness
- VL muscle stiffness correlated with proximal patellar tendon stiffness

Stretching: More Harm than Good?

- End range stretching may provoke symptoms due to compressive loading
 - Better to manage restrictions in muscle mobility with massage techniques rather than stretching

Does Stretching Prevent Tendinopathies?

- Systematic review
- No evidence that frequently performed stretching exercises are effective preventive interventions
 - Explanations:
 - Longer and more intense stretching routines (minimal 10-min stretch protocols) required for a change in tendon properties are unrealistic
 - Repetitive compressive load on the tendon might even cause tendinopathy

Summary

- Minimize tendon wrapping
 - i.e., limit ankle dorsiflexion
- Use isometrics at start and throughout rehab to modify pain
- Progress as tolerated
 - Motion
 - Intensity (alternate)
 - Volume
- Identify provocative running/movement mechanics and training habits

Thank You

Madison, WI, USA